Problem 23.21

At what coordinate is the electric field zero?
I guess the first thing to notice is that
 the book didn't include a coordinate axis. I've put one in because it makes it easier to define distances. As usual, I will use

$$
\mathrm{E}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}
$$

to determine electric field magnitude, which means l'll use the charge magnitudes in the equation and let their positive or negitiveness govern whether the electric field at a particular point is in the $+x$ or $-x$ direction. Using our heads and noting that the magnitude of q_{2} is larger than q_{1}, we can say:

For $x>1: q_{1}$ will produce an E. fld. to the left (a positive test charge would be attracted to that negative charge, so that's the direction of the E. fld there) while q_{2} produces one to the right, but because q_{2} is both closer and larger in magnitude, the two fields will never add to zero. Bottom line: This region will never have a net field equal to zero.

For between the charges: q_{1} will produce an E. fld. to the left, but so also will q_{2}, so you will never have a net field equal to
 zero in that region.

For $\mathrm{x}<1$: q_{1} will produce an E. fld. to the right while q_{2} will produce one to the left. Because q_{1} is smaller in magnitude but closer to the point in question, there will be a point where the two fields will vectorially add to zero.

For the math, assuming that point is at " r ":

$$
\begin{aligned}
E_{\text {net }} & =E_{2}-E_{1} \\
& =\left(k \frac{q_{2}}{(x+r)^{2}}\right)-\left(k \frac{q_{1}}{x^{2}}\right) \\
& =0
\end{aligned}
$$

Solving this, we get:

$$
\begin{aligned}
E_{\text {net }} & =E_{2}-E_{1} \\
& =\left(k \frac{q_{2}}{(x+r)^{2}}\right)-\left(k \frac{q_{1}}{x^{2}}\right) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow q_{2} x^{2}=q_{1}(x+r)^{2} \\
& \Rightarrow \frac{q_{2}}{q_{1}} x^{2}=(x+r)^{2} \\
& \Rightarrow \sqrt{\frac{q_{2}}{q_{1}} x}=(x+r) \\
& \Rightarrow \sqrt{\frac{6.00 \times 10^{-6} \mathrm{C}}{2.50 \times 10^{-6} \mathrm{C}}}(1.00 \mathrm{~m})=(1.00 \mathrm{~m})+r \\
& \Rightarrow r=.55 \mathrm{~m} \quad \text { (to the left of the origin, as "r" is defined) }
\end{aligned}
$$

BIG NOTE: E_{1} was not negative because it's field-producing charge was negative. It was negative because q_{1} produced an electric field at that point that was in the negative direction. If q_{1} had been to the left of the point, the electric field it produced would have been in the POSITIVE direction and it's E would have been positive!

